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Effects of Inclined Angle and Aspect Ratio

on Heavy Water Separation Efficiencies in

Double-Flow Thermal-Diffusion Columns

with External Refluxes
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ABSTRACT

The heavy water separation efficiency enhancement in double-flow, by

inserting an impermeable sheet or a permeable barrier into double-flow

thermal-diffusion columns with external refluxes at the ends has been

investigated analytically. The analysis is conducted when using an

orthogonal expansion technique. The separation efficiencies are

compared with conventional Clusius–Dickel columns of the same size.

Considerable improvements in heavy water enrichment in double-flow

thermal-diffusion columns can be obtained by increasing the inclined

angle and/or by decreasing the aspect ratio. Analytical results also show
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that both the recycle ratio and the position of insertion are important

design parameters.

Key Words: Water isotopes; Orthogonal expansion techniques; Inclined

angle; Aspect ratio; Thermal diffusion.

INTRODUCTION

The transport phenomenon of thermal diffusion was first discovered by

Enskog[1] in 1911 from theoretical considerations of the kinetic theory of a

gas mixture and was later demonstrated experimentally by Chapman and

Dootson[2] in 1917. In static systems, which were used in the early study on the

thermal-diffusion effect, the temperature gradient was established in such a

fashion that mass convection was eliminated by the concentration gradient

flux due to ordinary diffusion and resulting in no net bulk flow. Subsequently,

Clusius and Dickel[3,4] pointed out that convective currents could be created to

produce cascading effects, analogous to the multistage effect of countercurrent

extraction and result in a considerable separation efficiency improvement.

Applications of the convective-current concept in practical separation

systems were presented and investigated by Furry et al.[5,6] Recently, heavy

water enrichment by using the Clusius–Dickel column was studied both

theoretically and experimentally by Yeh et al.[7–9]

Previous theoretical studies on the Clusius–Dickel column have indicated

that the convective currents in the vertical thermal-diffusion columns actually

have two conflicting effects, the advantageous cascading effect and the

disadvantageous remixing effect on the mass diffusion along the column axially

and across the column radially.[3,4] Improved design, hence, can be obtained via

the suppression of the remixing effect or the enhancement of the cascading

effect. It has been shown that in a flat-plate column, the disadvantageous remixing

effect can be effectively reduced and adjusted by using the inclined vertical

column.[10] Based on the concept of reducing convection strength, there have

been many improved designs for the Clusius–Dickel column, including inclined

columns,[11,12] wired columns,[13,14] inclined moving-wall columns,[15,16] rotary

columns,[17–19] packed columns,[20,21] rotary wired columns,[22,23] permeable

barrier columns,[24,25] and impermeable barrier columns.[26]

The introduction of recycling into double-pass parallel-platemass exchangers

has been proved to be capable of enhancing mass-transfer coefficients.[27–29]

The purpose of this study is to investigate the effects of the aspect ratio and the

inclination angle on the performance of the Clusius–Dickel columns with recyc-

ling and insertion of an impermeable sheet or a permeable barrier. The transport

phenomena in such devices belong to the category of conjugated Graetz
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problems. The theoretical formulations of such conjugated Graetz problems were

solved by using the orthogonal expansion technique.[25,30–36] The improve-

ments of the device performance of double-flow thermal-diffusion columns

with external refluxes operated at various design and parameters are analyzed.

THEORETICAL FORMULATIONS

Inclined Clusius–Dickel Column

The transport equations for heavy water separation enrichment in the

continuous Clusius–Dickel column, as shown in Fig. 1, have been developed

Figure 1. Schematic diagram of the continuous-type thermal-diffusion column.
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in our previous work.[29] The degree of separation of the entire column can be

determined as follows

D0 ¼ Cb ÿ Ct ¼ De þ Ds ¼ (Fe þ Fs)
1ÿ eÿs0L0=2

s 0
(1)

where transport constants and the dimensionless variables are defined as

H ¼
abrg(2v)3(DT )2

6!m �TT
, 0, K ¼

rg2b2W7B(DT)2

9!m2D
(2)

and

s0
¼

s

ÿH
, L0 ¼

L(ÿH)

K
(3)

The pseudoconcentration product is defined as

CĈC ¼ C

(

0:05263ÿ (0:05263ÿ 0:0135Keq)C

ÿ 0:027 1ÿ 1ÿ
Keq

4

� �

C

� �

CKeq

� �1=2
)

(4)

in which

Keq ¼
[HDO]2

[H2O][D2O]
�

19� 19

18� 20
(5)

In Eq. (1), Fe and Fs are defined as

Fe ¼ CeĈCe ¼
1

CB ÿ CF

ðCB

CF

CĈC dC (6)

Fs ¼ CsĈCs ¼
1

CF ÿ CT

ðCF

CT

CĈC dC (7)

A simple and adaptable way of reducing the convective strength is to

incline a flat-plate column with the hot plate on top, so as to diminish the

effective gravitational force. The separation equations for an inclined
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column can be obtained easily by replacing g with gcosf in Eq. (2),

that is,

H 0
¼

abr cosfg(2v)3(DT)2

6!m �TT
¼ Hcosf (8a)

K 0
¼

rg2cos2 fb2W7B(DT)2

9!m2D
¼ Kcos2 f (8b)

The degree of separation in an inclined Clusius–Dickel column can be

determined using by Eqs. (1), (3), (4), (8a), and (8b).

Inclined Clusius–Dickel Column with External Refluxes

A new design of continuous-type thermal diffusion columns inserts an

impermeable sheet or a permeable barrier between the plates, as shown in

Figs. 2 and 3, is proposed. The column is composed of enriching and stripping

sections. The channel thickness of two sections are WA and WB, respectively.

Feed enters from the center of the column and output products can be drawn

from both ends.

In obtaining the theoretical formulation, the following assumptions are

made: (a) heat transfer between the space of the hot and cold plates is by

conduction only; (b) fluid flow is purely laminar; (c) the influences of ordinary

and thermal diffusions, end effects, and inertia terms on the velocity are

neglected; (d) ordinary diffusion in the vertical direction and bulk flow in

the horizontal direction are neglected; and (e) fluxes due to thermal diffusion

are constant (i.e., aĈC/T̃, aCAeĈAe/T̃, and aCBeĈBe/T̃ are constant and equal

to u). For the inclined column with the insertion of a permeable barrier or an

impermeable sheet in the enriching section, the following dimensionless

variables are introduced:

hA ¼
xA

WA

, hB ¼
xB

WB

, 6 ¼
z

L
,

~TT ¼
2W3

AT1 þ 2W3
BT2 ÿ h1(W

4
A ÿW2

B)

2(W3
A þW2

B)

h1 ¼
DT

WA þWB þ (kf d)=[kf 1þ k(1ÿ 1)]
,

h2 ¼
h1kf

kf 1þ k(1ÿ 1)
, k ¼

WA

W
, R ¼

sR

s
(9)

where h1 is the temperature gradient of the fluid between hot and cold plates,

and h2 is the temperature gradient of the fluid within the barrier.
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Figure 2. Schematic diagram of a double-flow inclined thermal-diffusion column

with a vertical permeable barrier inserted.
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The velocity distribution in dimensionless form for the enriching section

may be written as

VAe(hA) ¼ ÿf1e(hA ÿ h3
A)þ f2e(h

2
A ÿ hA)þ (1þ R)f3e(hA ÿ h2

A) (10)

VBe(hB) ¼ g1e(hB ÿ h3
B)ÿ g2e(h

2
B ÿ hB)þ Rg3e(hB ÿ h2

B) (11)

Figure 3. Schematic diagram of a double-flow inclined thermal-diffusion column

with a vertical impermeable sheet inserted.
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in which

f1e ¼
bgcosfh1W

3
A

6m
, f2e ¼

bgcosfW2
A[2W

3
BDT ÿ h1(W

4
A ÿW4

B)]

4m(W3
A þW3

B)

f3e ¼
6W2

As

rB(W3
A þW3

B)
, g1e ¼

bgcosfh1W
3
B

6m

g2e ¼
bgcosfW2

B[2W
3
ADT þ h1(W

4
B ÿW4

A)]

4m(W3
A þW3

B)
, g3e ¼

6W2
Bs

rB(W3
A þW3

B)

(12)

For the stripping section, all these equations are still valid expect that the

subscript “e” must be replaced by “s” and R in Eq. (11), and (1 þ R) in Eq. (10)

should be replaced by (1 þ R) and R, respectively.

(A) A Permeable Barrier Inserted

For the double-pass continuous-type thermal diffusion column with the

permeable barrier inserted between the plates, as shown in Fig. 2, the

equations of mass transfer for each slit in the enriching section in dimen-

sionless form are

@2CAe

@h2
A

¼
W2

AVAe

LD

� �

@CAe

@z
(13)

@2CBe

@h2
B

¼
W2

BVBe

LD

� �

@CBe

@z
(14)

The thermal diffusion term has been eliminated in both Eqs. (13) and (14)

because of the assumption (e). The associated boundary conditions are

ÿ@CAe

@hA

þ auh1WA ¼ 0 at hA ¼ 0 (15)

@CBe

@hB

þ auh1WB ¼ 0 at hB ¼ 0 (16)

ÿ@CAe

@hA

þ auh1WA ¼
WA

WB

@CBe

@hB

þ auh1WB

� �

at hA ¼ hB ¼ 1 (17)

ÿ
@CAe

@hA

þ auh1WA

¼
WA1

d
auh2dÿ

CBe

D
þ
CAe

D

� �

at hA ¼ hB ¼ 1 (18)

CAe ¼ CBe ¼ Ct, at z ¼ 1 (19)
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where a is the thermal diffusion constant. Equations (15) and (16) describe the

continuity of mass fluxes on the impermeable hot and cold plates, whereas

Eqs. (17) and (18) are for the two sides of the permeable barrier. Since it is

imperative to have a mixing zone at the ends, Eq. (19) is imposed. For the

stripping section, Eqs. (13)–(19) are still valid except that the symbol s and

subscript e should be replaced by 2s and s, respectively.

The analytical solution to this type of problem can be obtained by using

an orthogonal expansion technique. Separation of variables results in the

following forms:

CAe(hA, z) ¼ uh1WAhA þ

X

1

m¼0

SAe,mFAe,m(hA)Ge,m(z) (20)

CBe(hB, z) ¼ ÿuh1WBhB þ

X

1

m¼0

SBe,mFBe,m(hB)Ge,m(z)þ u(DT) (21)

Without losing generality, we may assume the eigenfunctions FAe,m

(hA) and FBe,m(hB) to be polynomials and can express them in the following

forms:

FAe,m(hA) ¼
X

1

n¼0

dmnh
n
A, dm0 ¼ 1 (selected), dm1 ¼ 0 (22)

FBe,m(hB) ¼
X

1

n¼0

emnh
n
B, em0 ¼ 1 (selected), em1 ¼ 0 (23)

All the coefficients dmn and emn may be expressed in terms of eigenvalue lm.

dm2 ¼ 0

dm3 ¼
(1þ R)lmW

2
A

6LD
a1

dm4 ¼
(1þ R)lmW

2
A

12LD
a2

dm5 ¼
(1þ R)lmW

2
A

20LD
a3

dm(nþ2) ¼
(1þ R)lmW

2
A

(nþ 2)(nþ 1)LD

� [a1dm(nÿ1) þ a2dm(nÿ2) þ a3dm(nÿ3)], n � 4 (24)
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and

em2 ¼ 0

em3 ¼
RlmW

2
B

6LD
b1

em4 ¼
RlmW

2
B

12LD
b2

em5 ¼
RlmW

2
B

20LD
b3

em(nþ2) ¼
RlmW

2
B

(nþ 2)(nþ 1)LD

� [b1em(nÿ1) þ b2em(nÿ2) þ b3em(nÿ3)], n � 4 (25)

By following the same mathematical treatment performed in the previous

work,[26–28] the degree of separation for the whole column can be obtained by

using the separation of variables method. Solving Eqs. (13) and (14)

analytically with boundary conditions, Eqs. (15)–(19), and combining the

concentration distributions in the enriching section give the general

expressions for the expansion coefficients (SAe,m, SBe,m, SAs,m, and SBs,m) in

the stripping section as

WB

ð1

0

[Ct ÿ uh1WAhA] �
W2

AVA(hA)

LD

� �

SAs,mFAs,m dhA

þWA

ð1

0

[Ct þ uh1WBhB] �
W2

BVA(hA)

LD

� �

SBs,mFBs,m dhB

¼ WB

ð1

0

S2As,m
W2

AVA(hA)

LD

� �

F2
As,m dhA

þWA

ð1

0

S2Bs,m
W2

BVB(hB)

LD

� �

F2
Bs,m dhB (26)

The average concentration differences for both channels A and B in the

stripping section are obtained from Eqs. (27) and (28), respectively.

Ct ÿ

Ð 1

0
VAs(hA)CAs(hA, 0) dhA
Ð 1

0
VAs(hB) dhB

¼
DL

P

1

m¼0,ls,m¼0 [SAs,mF
0

As,m(1)=ls,m][exp(ls,m)ÿ 1]

W2
A

Ð 1

0
VAs(hA) dhA

(27)
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and

Ct ÿ

Ð 1

0
VBs(hB)CBs(hB, 0) dhB
Ð 1

0
VBs(hB) dhB

¼
DL

P

1

m¼0,ls,m¼0 [SBs,mF
0

Bs,m(1)=ls,m][exp(ls,m)ÿ 1]

W2
B

Ð 1

0
VBs(hB) dhB

(28)

In the enriching section, following the same procedure gives Eqs. (29) and

(30) for channels A and B, respectively.

Ð 1

0
VAe(hA)CAe(hA, 0) dhA
Ð 1

0
VAe(hA) dhA

ÿ Cb

¼
DL

P

1

m¼0,le,m¼0 [SAe,mF
0

Ae,m(1)=le,m][1ÿ exp(ÿle,m)]

W2
A

Ð 1

0
VAe(hA) dhA

(29)

and

Ð 1

0
VBe(hB)CBe(hB,0) dhB
Ð 1

0
VBe(hB) dhB

ÿ Cb

¼
DL

P

1

m¼0,le,m¼0 [SBe,mF
0

Be,m(1)=ls,m][1ÿ exp(ÿle,m)]

W2
B

Ð 1

0
VBe(hB) dhB

(30)

Combining Eqs. (27) and (29) [or Eqs. (28) and (30)] yields the degree of

separation (D) for the whole column in terms of the eigenvalues (le,m and ls,m),

expansion coefficients (SAe,m, SBe,m, SAs,m, and SBs,m), permeable barrier

position (k), recycle ratio (R), and angle of inclination (f). The analytical

result is as follows

Dm ¼ Cb ÿ Ct ¼
LD

P

1

m¼0 [SAe,mF
0

Ae,m(1)=le,m][1ÿ exp(ÿle,m)]

(kW)2
Ð 1

0
VAe dhA

 

þ

Ð 1

0
VAeCAe(hA, 0) dhA
Ð 1

0
VAe dhA

!

ÿ

Ð 1

0
VAs,mCAs(hA, 0) dhA

Ð 1

0
VAs dhA

 

ÿ
LD

P

1

m¼0 [SAs,mF
0

As,m(1)=ls,m][exp(ls,m)ÿ 1]

(kW)2
Ð 1

0
VAs dhA

!

(31)
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or

Dm ¼ Cb ÿ Ct ¼
LD

P

1

m¼0 [SBe,mF
0

Be,m(1)=le,m][1ÿ exp(ÿle,m)]

(1ÿ k)2W2
Ð 1

0
VBe dhB

 

þ

Ð 1

0
VBeCBe(hB, 0) dhB
Ð 1

0
VBe dhB

!

ÿ

Ð 1

0
VBs,mCBs(hB, 0) dhB

Ð 1

0
VBs dhB

 

ÿ
LD

P

1

m¼0 [SBs,mF
0

Bs,m(1)=ls,m][exp(ls,m)ÿ 1]

(1ÿ k)2W2
Ð 1

0
VBs dhB

!

(32)

(B) An Impermeable Sheet Inserted

For the double-pass device with an impermeable sheet inserted, as shown

in Fig. 3, a similar approach can be taken for deriving the equations. The

equations of mass transfer for each slit in the enriching section also may

be obtained in the same dimensionless form as in Eqs. (13) and (14), with the

boundary conditions of Eqs. (17) and (18) being changed to

ÿ
@CAe

@hA

þ auh1WA ¼ 0 at hA ¼ 1 (33)

@CBe

@hB

þ auh1WB ¼ 0 at hB ¼ 1 (34)

The two subchannels are separated by an impermeable sheet with

negligible thermal resistance and, hence, share the temperature gradient.

The calculation procedure is similar to that in the previous section, except

the eigenvalues (lAe,m, lAs,m, and lBe,m, and lBs,m) for each subchannel

are calculated individually. The degree of separation for the double-pass

device with an impermeable sheet inserted is

D ¼ Cb ÿ Ct ¼
LD

P

1

m¼0 [SAe,mF
0

Ae,m(1)=lAe,m][1ÿ exp(ÿlAe,m)]

(kW)2
Ð 1

0
VAe dhA

 

þ

Ð 1

0
VAeCAe(hA, 0) dhA
Ð 1

0
VAe dhA

!

ÿ

Ð 1

0
VAs,mCAs(hA, 0) dhA

Ð 1

0
VAs dhA

 

ÿ
LD

P

1

m¼0 [SAs,mF
0

As,m(1)=lAs,m][exp(lAs,m)ÿ 1]

(kW)2
Ð 1

0
VAs dhA

!

(35)
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or

D ¼ Cb ÿ Ct ¼
LD

P

1

m¼0 [SBe,mF
0

Be,m(1)=lBe,m][1ÿ exp (ÿlBe,m)]

(1ÿ k)2W2
Ð 1

0
VBe dhB

 

þ

Ð 1

0
VBeCBe(hB, 0) dhB
Ð 1

0
VBe dhB

!

ÿ

Ð 1

0
VBs,mCBs(hB, 0) dhB

Ð 1

0
VBs dhB

 

ÿ
LD

P

1

m¼0 [SBs,mF
0

Bs,m(1)=lAs,m][exp(lAs,m)ÿ 1]

(1ÿ k)2W2
Ð 1

0
VBs dhB

!

(36)

SEPARATION EFFICIENCY STUDY

The improvement of separation, Im and I, for a permeable barrier and an

impermeable sheet inserted, respectively, are defined relative to the vertical

Clusius–Dickel column of the same size as

Im ¼
Dm ÿ D0

D0

(37)

and

I ¼
Dÿ D0

D0

(38)

The ratio of column length to column width, the aspect ratio, is an

important parameter affecting the separation efficiency in thermal diffusion

columns. There are two parts needed to be included in the cost of using the

thermal diffusion column: a fixed charge and an operation cost. The fixed

charge depends on the equipment cost, while the main operating expense

comes from the heat supply. If the temperature difference (DT ) and thickness

(WA þ WB) between hot and cold walls are fixed, the total expenditure is

determined when the plate-surface area (A) is specified. Hence, the effects of

aspect ratio on the device performance for an inclined thermal-diffusion

column with external refluxes is investigated for a given plate-surface area and

are shown in Figs. 4 and 5.

RESULTS AND DISCUSSION

For illustration, a set of typical parameters is listed in Table 1. Tables 2

and 3 show the results of the first two eigenvalues and their associated

Heavy Water Separation Efficiency 987

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



ORDER                        REPRINTS

Figure 4. Effect of inclined angle for the column an impermeable sheet inserted on

the degree of separation with aspect ratio as a parameter; Cf ¼ 0.1, 0.7, s ¼ 1.0 g/hr,
R ¼ 3.0.
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expansion coefficients for R ¼ 3.0, k ¼ 1/2, s ¼ 1.0 g/hr, and Cf ¼ 0.1 for

the inclined columns by inserting a permeable barrier and an impermeable

sheet, respectively. Due to the rapid convergence characteristics, only the first

negative eigenvalue is adopted for the calculation of the degree of separation.

Figure 5. Effect of inclined angle for the column an permeable barrier inserted on the

degree of separation with aspect ratio as a parameter; Cf ¼ 0.1, 0.7, s ¼ 1.0 g/hr,
R ¼ 3.0.
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(A) An Impermeable Sheet Inserted

The degree of separation is analyzed for Cf ¼ 0.1 and Cf ¼ 0.7, with the

channel thickness ratio k as a parameter, as shown in Figs. 6 and 7. It is found

in these figures that the maximum degree of separation for the Cf ¼ 0.1

and Cf ¼ 0.7 in double-flow inclined thermal-diffusion columns with

an impermeable sheet can be obtained at k ¼ 0.75. Although the inclination

effect has positive influences on the degree of separation for the device with an

impermeable barrier, there exists the best angle of inclination. For R ¼ 3.0 and

s ¼ 1.0 g/hr, as shown in Figs. 6 and 7, the best angle is 408–508. It also is

shown in Fig. 4 that for k ¼ 0.75 and R ¼ 3.0 with a specified area, say

A ¼ L � B ¼ 122 cm � 10.12 cm, the maximum degree of separation

decreases as the aspect ratio, L/B, moves away from 3.01. Some numerical

values of the improvement performance I are given in Table 4. The separation

efficiency improvement can be analyzed for any Cf, k, and f.

(B) A Permeable Barrier Inserted

The variations of degree of separation and separation efficiency

improvement with the feed concentration, angle of inclination, channel

thickness ratio, and aspect ratio are presented in Figs. 5, 8, and 9 and

Table 5. One may notice in Figs. 8 and 9, and in Table 5 that the maximum

degree of separation occurs at k ¼ 0.75 and f ¼ 30–408. It also is shown in

Fig. 5 that for k ¼ 0.75 with a specified area, the maximum degree of

separation decreases as the aspect ratio, L/B, moves away from 3.01.

The separation efficiency improvements, I and Im, as defined by Eqs. (37)

and (38) are shown in Tables 4 and 5. It is shown in Tables 4 and 5 that the

separation efficiency improvement of the device with an impermeable sheet

Table 1. A set of typical parameters.

B ¼ 10.12 cm b ¼ 5 � 1023 g/cm3K

DT ¼ 30.5K D ¼ 3.9 � 1025 cm2/s
L ¼ 144 cm WA þ WB ¼ 0.08 cm

d ¼ 0.02 cm a ¼ –0.0184

r ¼ 1.0 g/cm3 Keq ¼ 3.8

g ¼ 980 cm/s2 1 ¼ 0.378

T̃ ¼ 303.25K A ¼ 1457.28 cm2

m ¼ 1.0 g/cm s

kf ¼ 0.00132 cal/cm sK k ¼ 3.8 � 1022 cal/cm sK
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Figure 6. Effect of inclined angle on the degree of separation with sheet position as a

parameter; Cf ¼ 0.1, s ¼ 1.0 g/hr, R ¼ 3.0.
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Figure 7. Effect of inclined angle on the degree of separation with sheet position as a

parameter; Cf ¼ 0.7, s ¼ 1.0 g/hr, R ¼ 3.0.
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inserted increases as f goes away from 408 to 508. The effects of k on I and Im
are also presented in Tables 4 and 5. The separation degree improvements, I

and Im, increase as k goes away from two peaks, say k ¼ 1/4 and k ¼ 3/4. It
is noted that the improvements of the degree of separation, I and Im, increase

when k goes away from 1/2, especially for k . 1/2, and the separation degree

Figure 8. Effect of inclined angle on the degree of separation with barrier position as

a parameter; Cf ¼ 0.1, s ¼ 1.0 g/hr, R ¼ 3.0.
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Figure 9. Effect of inclined angle on the degree of separation with barrier position as

a parameter; Cf ¼ 0.7, s ¼ 1.0 g/hr, R ¼ 3.0.
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improvements rise with increasing the reflux ratio but fall with increasing

the feed fraction.

CONCLUSIONS

Separation efficiency of double-flow thermal-diffusion columns with the

insertion of an impermeable sheet or a permeable barrier has been investigated

and solved analytically by using the orthogonal expansion technique with

eigenfunction expanded in terms of an extended power series. The

approximation solution in the inclined Clusius–Dickel column was derived

by the transport equation, Eq. (1), and the analytical solution in this study

was found from Eq. (35) [or Eq. (36)]. For an illustration, the design

parameters (W ¼ 0.08,f ¼ 08, and k ¼ 0.9999 � 1) and operating parameters

(s ¼ 1.0 g/hr and R ¼ 0) were used to check the degree of separation with

feed fraction concentration as a parameter for both analytical and

approximation solutions, and the comparisons of those two solutions were

made and presented in Table 6. The approximation solutions were validated

from our previous work.[29] It is found from Table 6 that the theoretical

solutions conform pretty well with the approximation solutions.

The influences of aspect ratio and inclined angle on the best performance

of such devices are investigated by keeping a constant plate surface area,

which implies a constant equipment cost. The optimal aspect ratio is

L/B ¼ 61 cm/20.24 cm ¼ 3.01, and the optimal angle is f ¼ 308–408 and

408–508 with an impermeable sheet inserted and a permeable barrier inserted,

respectively. The analytical results, as shown in Figs. 6–9 indicate that the

separation efficiency enhancement occurs for the device with a permeable

Table 6. Comparisons of the degree of separation between the

analytical and approximation solutions in the inclined Clusius–Dickel

column with feed fraction concentration as a parameter.

Cf

D (%)

Approximation solutions

obtained from Eq. (1)

Analytical solution obtained

from Eq. (35) [or Eq. (36)]

0.1 0.341 0.345

0.3 0.590 0.591

0.5 0.635 0.635

0.7 0.536 0.537

0.9 0.194 0.197
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barrier. While designing such devices with an impermeable sheet and a

permeable barrier inserted, proper angle of inclination, and ratio of channel

thickness can be determined technically with economical feasibility. More-

over, the position of the impermeable sheet and permeable barrier has

significant influence on the mass transfer behavior in double-pass operations.

It is clear from the results that the maximum separation efficiency improve-

ment can be obtained at certain insertion locations.

NOMENCLATURE

B column width (cm)

C fraction concentration of D2O in H2O–HDO–D2O system (—)

D ordinary diffusion coefficient (cm2/s)
dmn coefficient in the eigenfunction Fm for region A (—)

emn coefficient in the eigenfunction Fm for region B (—)

Fm eigenfunction associated with eigen value lm (—)

ĈC pseudoproduct form of concentration for D2O defined by

Eq. (4) (—)

Fe, Fs appropriate values of ĈC in enriching section, in stripping

section (—)

f1, f2, f3 constants defined in the velocity distribution of region A (—)

Gm function defined during the use of orthogonal expansion

method (—)

g gravitational acceleration (cm/s2)
g1, g2, g3 constants defined in the velocity distribution of region B (—)

H transport coefficient defined by Eq. (2) (g/s)
Im, I improvement of the degree of separation defined by Eqs. (37)

and (38) (—)

Jx, Jz mass flux of component 1 in the x and z direction (g/cm2 s)

K transport coefficient defined by Eq. (2) (g/s cm)

Keq mass-fraction equilibrium constant of H2O–HDO–D2O

system (—)

k, kf thermal conductivity of the barrier and the fluid, respectively

(cal/cm sK)

L one-half of column length (cm)

L0 dimensionless coordinate by Eq. (3) (—)

qm ratio of expansion coefficients associated with eigenvalue

lm (—)

R reflux ratio at both ends of the column (—)

Sm expansion coefficient associated with eigenvalue lm (—)

T̃ reference temperature evaluated by Eq. (9) (K)
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T1, T2 temperatures of the cold and hot plates, respectively (K)

DT difference in temperature of hot and cold surfaces (K)

V velocity distribution of fluid in the vertical direction (cm/s)
W thickness of the region (cm)

x coordinate in the horizontal direction (cm)

z coordinate in the vertical direction (cm)

Greek Symbols

a thermal diffusion constant for D2O in H2O–HDO–D2O

system (—)

b (@r/@T ) evaluated at reference temperature (g/cm3K)

D degree of separation, CB 2 CT (—)

De, Ds CB 2 CF, CF 2 CT (—)

d thickness of the barrier (cm)

1 permeability of the barrier (—)

z dimensionless coordinate in the vertical direction, defined by

Eq. (9) (—)

h dimensionless coordinate in the horizontal direction, defined

by Eq. (9) (—)

f angle of inclination of column plate from the vertical (8)

lm eigenvalue (—)

m viscosity of fluid (g/cm s)

r density of fluid (g/cm3)

s mass flow rate of top or bottom product (g/hr)
s0 dimensionless mass flow rate defined by Eq. (3) (—)

k the position of an impermeable sheet or a permeable barrier

Subscripts

A in the channel A

B in the channel B

b at end of the enriching section

e in the enriching section

f of feed stream

t C at end of stripping section

s in the stripping section
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